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Summary

The kinetics of release from a population of microparticles is determined by the distribution of a small number of parameters
governing the release function in a heterogeneous population. A general model for treatment of the distribution is developed for any
release pattern common to a whole population, which is shown to lead to a variety of different cumulative release equations, including
those hitherto considered to govern the release mechanism from microcapsules. Thus, the main case, that of constant release rate from
individuals differing in rate constant, is shown to yield, according to the statistical distribution of the parameters, ensemble kinetics
following first-order, square-root of time (Higuchi’s equation), cube-root law (Hixson-Crowell) or a combination of initial zero-order
followed by square-root of time relationships, all of which have been used to describe experimental systems studied. It is demonstrated
that the cumulative release kinetics observed in a multiparticle system, being a function of the statistical distribution of parameters,
does not characterize the basic release mechanism, which can only be determined directly from studies on individuals. The treatment
also shows that in the case of first-order release by individuals, the ensembles cannot also observe first-order kinetics, except in the
rare case of homogeneity of the determining parameters in the population.

Introduction ual microcapsules was experimentally determined

using a newly developed technique. In all the
systems studied the overall release profile was seen
to be entirely different from that of the single
microcapsules, causing the release mechanism to
be misinterpreted. Whereas the single microcap-
sules release their payload at constant rate, as

This paper is devoted to the development of the
statistical models for the release kinetics of multi-
particle systems. In the companion paper (Hoff-
man et al., 1986) the release behaviour of individ-
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predicted theoretically (Hoffman et al., 1985, 1986),
the same microcapsules in ensembles observed
first-order, or exponential behaviour. Such ex-
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ponential kinetics are in fact the norm, fitting far
more experimental data than any other mathe-
matical description. Exponential kinetics are, how-
ever, difficult to reconcile with chemical theories
for release mechanisms of microencapsulated solids
(Hoffman et al., 1986; Thies, 1982). This led to the
search for a non-mechanistic explanation based on
ensemble behaviour of a large number of statisti-
cally independent particles. The model described
in this paper is the result.

When applied to populations of microcapsules
that release their payload at constant rate, the
model predicts exponential cumulative release for
the ensemble whenever the time to complete re-
lease, which varies from one microcapsule to
another in the population, follows a certain skewed
distribution, and is statistically uncorrelated to the
microcapsules’ payload in a sense to be made
precise in this paper. Using exploratory data ana-
lytical techniques, the data gathered for the four
systems under study were shown (Hoffman et al,,
1986) to be in substantial agreement with the
statistical model, thereby lending experimental
support to the present approach.

Apart from the work of Thies and his col-
leagues (Thies, 1982; Dappert and Thies, 1978a
and b), there has been no appreciation or applica-
tion of the statistical approach in the literature,
despite its broad implications to release from all
multiparticulate systems in a great variety of appli-
cations additional to drug delivery.

In the present work, the statistical model is
developed in a manner that is sufficiently general
to accommodate any ensemble of particles exhibit-
ing a common type of release behaviour. The
variation among particles in the ensemble is ex-
pressed in the model through the distribution of a
small number of parameters governing their re-
lease function. Special attention is given to ensem-
bles of constant release-rate particles. In addition
to exponential ensemble kinetics, it is shown that
models used in describing cumulative release from
microcapsules, pellets and simple particulate dis-
persions, particularly of the first-order, square-roo.
of time (Higuchi’s matrix model) and the cube-root
equation of Hixson and Crowell, 1931), discussed
in the adjoining paper (Hoffman et al., 1986), are
derivable from the model with basic statistical

assumptions applied to the distribution of particle
parameters.

Theoretical basis

The only paper entering into possible bases for
understanding the release behaviour of heteroge-
neous particles is an important but apparently
unapplied one. Dappert and Thies (1978a) pro-
posed an elegant and simple statistical model for
the kinetics of release of material from populations
of microcapsules based on the release behaviour of
individuals. They postulated the following general
assumptions: (a) capsules release their payload
independently of each other; (b) the external con-
centration of material in the medium remains con-
stant or under sink conditions throughout the re-
lease process; and (c) the release functions of
individual capsules in the ensemble have the same
form and depend on a small number of physical
parameters that vary from capsule to capsule.

The fraction of the total population payload
(M, in their notation) released at time t, M*(t), is
then the statistical average of the (dimensionless
fraction m*(t) of total payload m_ of the single
capsules in the ensemble. Thus if the single capsule
(fractional) release function m*(t) is a function of
some physical parameter «, then for the popula-
tion fraction:

M*(1) =Lm*(t; a)y(a) da (1)

where R is the set of possible values of the param-
eter a and Y (a) is its density, i.e. Y (a)Aa repre-
sents the fraction of capsules in the population
with parameter values between a and a + Aa. The
parameter « in this formulation may represent a
single real parameter or a vector of parameters.
Using this formulation, Dappert and Thies
showed that the release function M*(t) for the
total population at time t, although determined by
the release function m*(t; a) for the individual
capsules through the process of averaging over «
as given in Dappert and Thies (1978a), does not
necessarily follow the same functional form as
m*(t). Thus individual capsules may release their



payload at a constant rate whereas the release
function M*(t) for the total population (derived
from Eqn. 1) may be exponential or first-order
release. More precisely, if the release function m(t)
per capsule is a broken line, i.e.:

m L ift<t

)

m ift>t,

oo

and assuming absence of lag time or burst effects,
then the fractional release function:

m*(t) = m(t)/m,,

is characterized by one parameter t_, the time to
complete release of its payload m_. If t_ is as-
sumed to follow the gamma-distribution with shape
parameter m = 2 and scale parameter K (Johnson
and Kotz, 1970), then the fractional release func-
tion for the ensemble M*(t) derived from Eqn. 1 is
exponential, i.e.:
M*(t)=1—-e X fort>0 (3)

To complete the specification of this model they
assumed an unfamiliar distribution for the slope b,
which in our notation reduces to the familiar
gamma-distribution for t_; note that t_, is propor-
tional to 1/b when m__ is constant in the popula-
tion.

The gamma-distribution for the time to com-
plete release is commonly used in the stochastic
modelling of waiting times in queuing and other
statistical theories, and has a density:
Y(t,)=K?*t e X= ift >0 (4)
We prefer the use of t_ to that of b, since the
former is a waiting time for the termination of a
physical process. A large number of possible dis-
tributions for modelling dispersion of waiting time
exist in the literature (see Johnson and Kotz (1970)
for example).

Although this result of Dappert and Thies may
appear superficially to be a mere mathematical
manipulation, its purpose was to demonstrate that
the specific functional form of a population release
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function determined in laboratory experiments
does not determine the functional form of release
for individual capsules and need not be explained
on that basis.

In their paper, the authors suggested that single
capsule kinetic release behaviour may be de-
termined in the laboratory for a sample of cap-
sules and the “ingredients” of their formula (Eqn.
1), ¥ (a) and m*(t; «) be computed, thus “explain-
ing” the ensemble behaviour determined experi-
mentally.

A technique for determining single capsule re-
lease behaviour has been developed by some of the
authors, and the program described above was
carried out for several types of capsules (Hoffman
et al., 1985).

In the present paper, the statistical approach is
carried one step further to model M(t) rather than
M*(t) and to investigate experimentally de-
termined ensemble release functions. We show that
common kinetic laws appearing to be applicable to
release from experimental microcapsular systems
(see refs. in Hoffman et al., 1985), such as Higuchi’s
law (Higuchi, 1963), postulating:

M(t) = Kyt (5)

for some constant K up to the release of 60-80%
of the total population payload M, can result
from an inhomogeneous ensemble of capsules each
of which releases its payload at contant rate. We
also show that the commonly encountered popula-
tion release function which starts out at constant
rate for small values of t, and then develops con-
tinuously into Higuchi’s law (Eqn. 5) may be
similarly explained. Finally the experimentally de-
rived law of Hixson and Crowell (1931) for dis-
solution release (Eqn. 6) during the early stages:

Wy 2—(W(1))'” =Kt (6)

where W(t)=M_ — M(t) represents the total
payload remaining at time t and W, =W(t=0)=
M, represents the initial payload, is derived statis-
tically from constant release rate capsules when t
is constrained to vary in a finite interval (O, A) for
all the capsules in the population and the statisti-
cal average of the capsule payloads in the sub-
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population of capsules with a given release time t
is proportional to t .

All these empirical population release laws are
shown to be possible in an ensemble of capsules or
particles which follow constant rate release indi-
vidually.

We also consider briefly a population of cap-
sules with individual exponential release function
following Eqn. 3. We show that such a population
cannot display an exponential release rate unless
the individual rate parameter K in Egn. 3 is con-
stant in the population. This result, together with
Dappert and Thies’ prediction of exponential re-
lease for the population from individual constant
rate release constitute a striking example of a
general principle which emerges from our investi-
gation. That is, that in general the empirical re-
lease functional form yields little information about
the underlying microprocess. Only direct measure-
ments of release of single microcapsules reveal the
basic kinetics involved.

This investigation also reveals the variety of
population release rates which are, at least theoret-
ically, possible with the same type of single cap-
sule release behaviour as shown to be the preferred
mechanism in the majority of cases (Hoffman et
al., 1985, 1986). The empirical investigation of
single capsule release behaviour together with
population release behaviour of the same capsules
under different physical conditions may lead to an
understanding of the factors governing the distri-
bution of parameters (such as t_ and m_) when
capsules release their payload simultaneously into
the same medium. One possibility may involve the
introduction of “coupling” between capsules in
the population that determines the distribution of
their parameters in a given population.

The general population model

The purpose of this section is to extend the
population release model as given in Dappert and
Thies (1978a) to allow for statistical “coupling” or
correlation between the parameter(s) a governing
the fractional payload release function m*(t; a)
and the total single capsule payload m_. In the
case of constant rate release for single capsules,

m*(t; a)is a function of t_, the time to complete
release of the capsule. The parameter a here is
one-dimensional and is identified as t_. In some
populations the value of m, and t_ of a capsule
may be positively correlated. In such populations,
capsules with larger payloads will tend to take
longer to release them completely. If we adopt the
basic assumptions {a)-(c), allowing, however, for a
possible correlation between m , and the parame-
ters a, the total population material released by
time t, M(t), will still be the sum of individual
capsule material released by time t, m(t). If $(m_,,
a)Am - Aa designates the fraction of capsules
having released m, - m*(t; «) by time t, we con-
clude that:

M(t)=Nj;{+mw -m*(t; a)y(m,, a) dm_da

™

where R™ denotes the range of values of (m,, «)
and N the number of capsules in the population.
We note parenthetically that «, which may be
vector-valued, may include m_, among its compo-
nents or may depend on m_, in other ways.

Our model, as formulated in Eqn. 7, can be
easily seen to be an extension of Eqn. 3. To this
end we introduce the notion of mean or average
capsule payload m (e,) in the subpopulation of
capsules sharing the same value(s) of the parame-
ter(s) «, say a = ag. In statistical terminology this
average is called the conditional expectation of
m,, given « = &g, and is a deterministic (non-ran-
dom) function of «,. If f, (m)Am,, denotes the
fraction of capsules in the subpopulation of cap-
sules with & = a, whose payload lies between m,,
and m_+A4m,, and g(a,)A(a,) denotes the
fraction of capsules in the total population with
parameter(s) a between «a, and «, + day, then we
may rewrite Eqn. 7 as:

M(t) =N fm,,(«)m*(t; a)g(e) da (7)
with:
m (@) = [mf, (m,) dm,, (8)

When m_(a,) does not depend on aq, i.e., the



average value of the payload subpopulations of
capsules sharing a fixed value of a = «q (viz. sub-
populations with a fixed functional release func-
tion m*(t; ay)) does not depend on the specific
value aq, then this constant value must be equal to
the average payload in the total population, say
T, satisfying Nm_, = M. Thus, if m («a,) does
not depend on a,, we have:

M(t) =M, [ m*(t; a)g(a) da

which is a simple re-expression of Eqn. 1.

Quite generally, we may introduce the fraction
f(m,) Am_ of capsules in the population with
payloads between m_ and m_ + 4m_, and the
average m_ of payloads in the population. We
then have the twin relations:
m,, =fmwf(mm) dm, and ®m, =M_ /N
Using both relations, we arrive at our final formu-
lation of the expanded model:

wamw(a)m*(t; a)g(a) da
M(t) = (7*)
‘ fmwf(mm) dm

Before applying this formula to specific micro-
models (specific functional forms of m*(t; a)), we
note that M, and the integral in the denominator
are population constants which do not depend on
t and which will not affect the form of the popula-
tion release function M(t), i.e. the form of M(t)
will be completely determined by the specification
of the function m («a) and the density (a) of the
parameter a.

In this sequel, we shall divide models according
to their functional payload release function form
m*(t; «), and then subdivide them according to
their m («) and g(«) forms.

Populations with constant release rate microcap-
sules

The basic constant rate model
The release function m(t) of a constant rate
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capsule (given by Eqgn. 2) is characterized by two
parameters, the total payload m_ and time to
complete release t . If we insert m(t) from Eqn. 2
into our general population release function as
given in Eqn. 7*, we obtain:

dM(t)

a MO

m, (1)
tOO

= (Mo/m,) [T () d, (9)

where m_(t_) is the average payload for fixed
values of t , and g(t_) is the density of t .

In the following subsections, we shall show that
the exponential, the square-root function Kt'/2
and the cube-root function Wj/> — W(1)!/? = Kt,
as well as other empirical release laws result from
this basic model (Eqn. 9) for different combina-
tions of m (¢t ) and g{t_).

In order to obtain overall zero-order release
from a population, it is necessary generally that
individuals releasing at constant rates have virtu-
ally identical values of t_, as may be seen from
Eqn. 9. Their payloads, however, may follow any
distribution, thus leading to an arbitrary distribu-
tion pattern for their rate constant b=m_ /t .

Exponential population release

If m_ and t_ are not correlated in the popula-
tion, m_(t, )=m,, as explained in “General
population model” section and

© ]
T M@)=C[ () dt.,

where C stands for a generic constant independent
of t. If t,, follows the gamma-distribution with
shape parameter m = 2 and scale K > 0 then

gt )=K?t e X~ ift >0 and
M'(t) = Ce Xt
leading to

M0 - M) am (1 -5

which is the common exponential release function
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with C = M. Exponential release for the popula-
tion may also be obtained from constant rate
capsules in other ways, e.g. when t_ and m_ are
correlated in such a way that

m_(t,)=Const.- t (Const. > 0)

and t_ has an exponential distribution with scale
parameter a > 0 and density
g(t,)=ae = fort >0

then according to Eqn. 9

[= =]
M'(t) = Const./ e *'=dt, = Const.-e™
t

and

M(t) = Const.(1 — e~ ") fort>0

The last formula (with positive constant) depicts
again first-order global behaviour. Note that the
exponential distribution is but a special case of a

028t
~8
50204
>
&
[
®
o
012¢
Qo4
20 6.0 100
'm

Fig. 1. Gamma density distribution of t_, with shape parameter
m = 2 and scale K > 0.

gamma-distribution with shape parameter m = 1.

To relate these results to experimental situa-
tions, one may expect first-order behaviour in a
population of constant rate capsules when their
payloads and times to complete release are uncor-
related and the marginal density of their release
times t_, follows the general form described in Fig.
1.

This density falls off exponentially with t but
vanishes at t, = 0. As mentioned in the Introduc-
tion it is widely used in statistical modelling of
waiting time phenomena and resembles the log-
normal density of particle size distribution which
often serves to model physical phenomena (Cars-
tensen and Musa, 1972; Irani and Callia, 1963;
Martin et al., 1969). First-order behaviour is also
expected where the density of t_ is exponential
and the scatter of t,, and m_ in the ensemble
indicates a linear dependence of m, on t with
noise.

As previously stated, the majority of experimen-
tal data on release from ensembles of microcap-
sules and other dispersed systems follows ex-
ponential kinetics.

The Kt'/? population release (apparent Higuchi’s
Law)

This type of release is characteristic of non-ho-
mogeneous capsule population. We show that it
arises in the basic model for constant rate capsules
(Eqn. 9) when t, is highly dispersed in the popu-
lation and m , and t_, are related in a simple way,
namely when

m_(t,)=a+bt,

for some positive constants a and b. The density of
t,, is given by:

x/EF)_ 1
. Jto (a+bty)

and is of the form given in Fig. 2.

This is the density of the square-root of a
Cauchy variable. Its dispersion is much higher
than that of a Gaussian variable since its density
falls off as 1/ \/Z (a+bt) as t_ increases; its
mean is infinite, although its median is of course

ift,>0

B(t) = |
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Fig. 2. Density of t, when t2 follows the standard Cauchy
distribution.

finite. Upon integrating Eqn. 9 with these (condi-
tional) mean payload and density of t_ we obtain:

M() =22

The assumptions leading to Higuchi’s equation
provide a possible mathematical expression to the
notion of non-homogeneous populations. If, for
instance, some capsules are not separated and
form an entity comprised of several capsules which
would separately follow a constant-rate release,
then the effective release time would be much
larger than the single capsule release time, the
effective payload would be a multiple of the origi-
nal payload and the two would be positively corre-
lated.

Many systems do in fact observe apparent
Higuchi release behaviour (see Hoffman et al.,
1986) and this may result from population distri-
bution following the above form. We see (Fig. 2)
that the sample distribution includes groups hav-
ing very short and very long release durations. The
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source may well be non-uniformity arising in the
production process, some microcapsules having
multiple cores providing extended release times
while others break into smaller particles giving
rapid release of their contents, with the possibility
of lowered efficiency of coating in the process.

Constant rate followed by apparent Higuchi’s equa-
tion .

In some experimental situations the population
release function M(t) appears to display constant
rate initially followed by a v law. This macrobe-
haviour may arise from a non-homogeneous popu-
lation with m (t )= bt for some b >0 and

1 .
g(too)=%\/ﬁ'?;/_2 ift,>n (10)

for some constant n > 0. In other words the time
to complete release of a single capsule always
exceeds some threshold n > 0 and large values of
t., are very likely. In fact the proportion of cap-

o42¢

ot ty,

03071

Density

0.18T

006t

-

08 24 40

Fig. 3. Pareto density distribution of t_.



220

sules with t_, exceeding a fixed value a > 7 is
) 1 1/2
L= —1— ﬂ)
j; B /2 ( a

which falls off to zero at the rate of 1/Va. Using
Eqn. 9 again we find that

ift<n

bt
M()= { bn(2/2 /1~ 1)

The distribution of t,, given by Eqn. 10 is the
Pareto distribution often used by econometricians
to model income distribution. It is characterized
by its positive threshold of minimum income 7
and its slow descent to zero for high incomes (Fig.
3). The difference between the square-root of
Cauchy distribution and the Pareto distribution
(Figs. 2 and 3) is that the latter has a larger value
for the minimal t_, the time up to which no
microcapsule has released all its contents. This
applies to all systems in which summation of the
constant rate lines (none of which are terminated)
gives a cumulative straight line. This explains the
zero-order behaviour during the initial period
found by many investigators, as for example, where
the square root of time relationship starts after
25% release (Madan et al., 1974). Another system
showed similar behaviour but also appeared to
observe square root time behaviour throughout
(Jalsenjak et al., 1980).

ift=n

Apparent Hixson and Crowell release law

This empirical population release law (Eqn. 6)
is applicable for small values of t, or in the initial
stages of release. It was shown to fit empirical
release curves in populations of capsules that tend
to disintegrate prior to completion of their payload
release (Benita and Donbrow, 1982).

We shall display a model for constant rate
capsules that predicts

M (t)=C(A—-1t)> for0<t<A

for some positive constants A and C, with
C=3 K3 and A =M!/?/K. The parameters M,
and K are the total payload and slope parameters
defined in Eqn. 6.

For this model

M(t)=C/3(A’—(A—1t)’) fort<A
which constitutes a mere rewriting of Eqn. 6 as
Hixson and Crowell’s law for t < A.

The functional forms needed for m_(t, ) and
g(t..) here are:

g(tw)=;2;(A—too) fo<t, <A

and
m_(t, )= Const.-t

Upon inserting these into the model (Eqn. 9) we
obtain the desired result.

The density chosen here for t_ puts into
mathematical form the empirical requirement that
all capsules in the medium disintegrate or other-
wise release their payload by some specific time A.
Furthermore, the chosen form of m_(t,) pos-
tulates that the average payload of all capsules in
the medium that release all their payload at t_
increases linearly with t .

Populations of exponential rate individual micro-
capsules

Here we assume that the single capsule release
function is given by:

m(t)=m_(1—e"K) (11)

for t> 0, which is characterized by the capsule
total payload m_ and a one-dimensional positive
parameter K. In the micro-model described by
Dappert and Thies (1978a), K and m , are related
by the equation:

r(C.(0)-C
_L(c(0-C)

mao
where C,(t) is the (assumed) concentration in the
region of the internal wall of the capsule (C;(t) =
C,(0) at t=0) and C, is the (assumed) constant



concentration at its external wall region; I' is a
parameter which depends entirely on the geomet-
ric properties of the capsule and may vary from
one capsule 10 another in the population.

When m(t) from Eqn. 11 is inserted into our
general model (7*) we obtain

M(t) = Cfooomw(K)(l —eKg(K)dK  (12)

where C is some positive constant, m,(K) is the
mean payload in the subpopulation of capsules
with a constant rate K and g(K) is the density of
K in the population. Eqn. 12 provides a general
formula for deriving the global function M(t) for
microcapsules with individual exponential release.

It is natural to expect that a population of
exponentially releasing microcapsules will display
global exponential release as in Eqn. 3. This is,
however, not the case, except in the unlikely popu-
lation of capsules that release their payload at the
exact same rate K,. Translated into the mathe-
matical terms of Eqn. 12, global first-order will
result only if the density g(K) of K is concentrated
at some constant K, > 0; in other words g(K) is
degenerate at K,. This assertion is valid under
some general assumptions (Eqn. 13) that stipulate
that m_ (K) be a “nice” function of K. These mild
assumptions are expected to be obeyed in any
realistic physical system. We conclude then that
first-order behaviour cannot arise in populations
of exponentially releasing capsules, unless the
capsules are extremely homogeneous and thus
share the same release rate K.

We include the proof of our assertion for the
sake of completeness.

The “nice” behaviour of m_(K) is translated
into the condition that

_/(;we’me(K)g(K) dK < o0 (13)

for some r>0. If M(t) of Eqn. 12 is to equal
M_ (1 —e™ X" for all t > 0 and some K, > 0 then
foralli=0,1,2,...

fo “Kim(K)g(K) dK = CK! (14)
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for some C > 0. Under the conditions of Eqn. 13
the only density g(K) to satisfy Eqn. 14 is the
degenerate density that concentrates all its mass as
K =K, thus proving our assertion.

Although exact first order may not exist in a
population of exponentially releasing individual
capsules, release behaviour that appears “almost”
exponential is possible, as may be seen from Eqn.
12 by assuming different forms for the functions
M_ (K). This exercise is fruitless, however, unless
an empirical model is available for the population
and the individual capsules are exponential.

Conclusions

(1) The theory of release of contents from an
ensemble of single particles such as microcapsules
has been developed for the case of individuals
releasing at constant rate based on simple assump-
tions (a)-(c). Four types of kinetics used in the
literature for populations have been derived on the
basis of different statistical distributions of the
parameter t_.. Many other types of release kinetics
may also be understood using the same basic
theory.

(2) In the event that conditions (a)-(c¢) are not
observed, it is possible that these or other kinetic
profiles may be followed.

(3) In all cases, the overall kinetics is de-
termined by the micro-behaviour and its distribu-
tion.

(4) Where individuals follow first order be-
haviour, the cumulative release data cannot be
exponential unless all the particles have identical
parameters. As this situation is extremely rare,
overall exponential release proves individual non-
exponential release, and derives from statistical
distribution phenomena of the types presented and
analyzed.
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