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Summary 

The kinetics of release from a population of microparticles is determined by the distribution of a small number of parameters 

governing the release function in a heterogeneous population. A general model for treatment of the distribution is developed for any 

release pattern common to a whole population, which is shown to lead to a variety of different cumulative release equations, including 

those hitherto considered to govern the release mechanism from microcapsules. Thus, the main case, that of constant release rate from 

individuals differing in rate constant, is shown to yield, according to the statistical distribution of the parameters, ensemble kinetics 

following first-order, square-root of time (Higuchi’s equation), cube-root law (Hixson-Crowell) or a combination of initial zero-order 

followed by square-root of time relationships, all of which have been used to describe experimental systems studied. It is demonstrated 

that the cumulative release kinetics observed in a multiparticle system, being a function of the statistical distribution of parameters, 

does not characterize the basic release mechanism, which can only be determined directly from studies on individuals. The treatment 

also shows that in the case of first-order release by individuals, the ensembles cannot also observe first-order kinetics, except in the 

rare case of homogeneity of the determining parameters in the population. 

Introduction 

This paper is devoted to the development of the 
statistical models for the release kinetics of multi- 
particle systems. In the companion paper (Hoff- 

man et al., 1986) the release behaviour of individ- 
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ual microcapsules was experimentally determined 
using a newly developed technique. In all the 
systems studied the overall release profile was seen 
to be entirely different from that of the single 
microcapsules, causing the release mechanism to 
be misinterpreted. Whereas the single microcap- 
sules release their payload at constant rate, as 
predicted theoretically (Hoffman et al., 1985,1986), 
the same microcapsules in ensembles observed 
first-order, or exponential behaviour. Such ex- 
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ponential kinetics are in fact the norm, fitting far 
more experimental data than any other mathe- 
matical description. Exponential kinetics are, how- 
ever, difficult to reconcile with chemical theories 

for release mechanisms of microencapsulated solids 
(Hoffman et al., 1986; Thies, 1982). This led to the 
search for a non-mechanistic explanation based on 
ensemble behaviour of a large number of statisti- 
cally independent particles. The model described 
in this paper is the result. 

When applied to populations of microcapsules 
that release their payload at constant rate, the 
model predicts exponential cumulative release for 
the ensemble whenever the time to complete re- 

lease, which varies from one microcapsule to 
another in the population, follows a certain skewed 
distribution, and is statistically uncorrelated to the 
microcapsules’ payload in a sense to be made 
precise in this paper. Using exploratory data ana- 
lytical techniques, the data gathered for the four 
systems under study were shown (Hoffman et al., 
1986) to be in substantial agreement with the 
statistical model, thereby lending experimental 
support to the present approach. 

Apart from the work of Thies and his col- 
leagues (Thies, 1982; Dappert and Thies, 1978a 
and b), there has been no appreciation or applica- 
tion of the statistical approach in the literature, 
despite its broad implications to release from all 

multiparticulate systems in a great variety of appli- 
cations additional to drug delivery. 

In the present work, the statistical model is 
developed in a manner that is sufficiently general 
to accommodate any ensemble of particles exhibit- 
ing a common type of release behaviour. The 
variation among particles in the ensemble is ex- 
pressed in the model through the distribution of a 
small number of parameters governing their re- 
lease function. Special attention is given to ensem- 
bles of constant release-rate particles. In addition 
to exponential ensemble kinetics, it is shown that 
models used in describing cumulative release from 
microcapsules, pellets and simple particulate dis- 
persions, particularly of the first-order, square-rook 
of time (Higuchi’s matrix model) and the cube-root 
equation of Hixson and Crowell, 1931) discussed 
in the adjoining paper (Hoffman et al., 1986), are 
derivable from the model with basic statistical 

assumptions applied to the distribution of particle 
parameters. 

Theoretical basis 

The only paper entering into possible bases for 
understanding the release behaviour of heteroge- 
neous particles is an important but apparently 
unapplied one. Dappert and Thies (1978a) pro- 
posed an elegant and simple statistical model for 
the kinetics of release of material from populations 
of microcapsules based on the release behaviour of 
individuals. They postulated the following general 
assumptions: (a) capsules release their payload 
independently of each other; (b) the external con- 
centration of material in the medium remains con- 
stant or under sink conditions throughout the re- 

lease process; and (c) the release functions of 
individual capsules in the ensemble have the same 
form and depend on a small number of physical 

parameters that vary from capsule to capsule. 
The fraction of the total population payload 

(M, in their notation) released at time t, M*(t), is 
then the statistical average of the (dimensionless 
fraction m*(t) of total payload m, of the single 
capsules in the ensemble. Thus if the single capsule 
(fractional) release function m*(t) is a function of 
some physical parameter (Y, then for the popula- 
tion fraction: 

M*(t) =/nm*(t; a)+(a) da 

where R is the set of possible values of the param- 
eter (Y and #(cx) is its density, i.e. $(a)Aa repre- 
sents the fraction of capsules in the population 
with parameter values between 1y and (Y + Aa. The 
parameter a! in this formulation may represent a 

single real parameter or a vector of parameters. 
Using this formulation, Dappert and Thies 

showed that the release function M*(t) for the 
total population at time t, although determined by 
the release function m*(t; CX) for the individual 
capsules through the process of averaging over (Y 
as given in Dappert and Thies (1978a), does not 
necessarily follow the same functional form as 
m*(t). Thus individual capsules may release their 
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payload at a constant rate whereas the release 
function M*(t) for the total population (derived 
from Eqn. 1) may be exponential or first-order 
release. More precisely, if the release function m(t) 
per capsule is a broken line, i.e.: 

i 

t 

m(t) = mmt, ift<t, 

m, iftht, 
(2) 

and assuming absence of lag time or burst effects, 
then the fractional release function: 

m*(t) = m(t)/m, 

is characterized by one parameter t,, the time to 
complete release of its payload m,. If t, is as- 
sumed to follow the gamma-distribution with shape 
parameter m = 2 and scale parameter K (Johnson 
and Kotz, 1970), then the fractional release func- 

tion for the ensemble M*(t) derived from Eqn. 1 is 
exponential, i.e.: 

M*(t) = 1 - eeKt for t > 0 (3) 

To complete the specification of this model they 
assumed an unfamiliar distribution for the slope b, 
which in our notation reduces to the familiar 
gamma-distribution for t,; note that t, is propor- 
tional to l/b when m, is constant in the popula- 
tion. 

The gamma-distribution for the time to com- 
plete release is commonly used in the stochastic 
modelling of waiting times in queuing and other 
statistical theories, and has a density: 

#(t,) = K2t,e-K’= ift,>O (4) 

We prefer the use of t, to that of b, since the 
former is a waiting time for the termination of a 
physical process. A large number of possible dis- 
tributions for modelling dispersion of waiting time 
exist in the literature (see Johnson and Kotz (1970) 
for example). 

Although this result of Dappert and Thies may 
appear superficially to be a mere mathematical 
manipulation, its purpose was to demonstrate that 
the specific functional form of a population release 

function determined in laboratory experiments 
does not determine the functional form of release 
for individual capsules and need not be explained 
on that basis. 

In their paper, the authors suggested that single 
capsule kinetic release behaviour may be de- 
termined in the laboratory for a sample of cap- 
sules and the “ingredients” of their formula (Eqn. 
l), J,(a) and m*(t; a) be computed, thus “explain- 
ing” the ensemble behaviour determined experi- 

mentally. 
A. technique for determining single capsule re- 

lease behaviour has been developed by some of the 
authors, and the program described above was 
carried out for several types of capsules (Hoffman 
et al., 1985). 

In the present paper, the statistical approach is 
carried one step further to model M(t) rather than 
M*(t) and to investigate experimentally de- 
termined ensemble release functions. We show that 
common kinetic laws appearing to be applicable to 
release from experimental microcapsular systems 
(see refs. in Hoffman et al., 1985), such as Higuchi’s 
law (Higuchi, 1963) postulating: 

M(t) = Kfi (5) 

for some constant K up to the release of 60-8055 
of the total population payload M,, can result 
from an inhomogeneous ensemble of capsules each 
of which releases its payload at contant rate. We 
also show that the commonly encountered popula- 
tion release function which starts out at constant 
rate for small values of t, and then develops con- 
tinuously into Higuchi’s law (Eqn. 5) may be 
similarly explained. Finally the experimentally de- 
rived law of Hixson and Crowell (1931) for dis- 
solution release (Eqn. 6) during the early stages: 

Wd” - (W(t))“’ = Kt (6) 

where W(t) = M, - M(t) represents the total 
payload remaining at time t and W, = W(t = 0) = 
M, represents the initial payload, is derived statis- 
tically from constant release rate capsules when t m 
is constrained to vary in a finite interval (0, A) for 
all the capsules in the population and the statisti- 
cal average of the capsule payloads in the sub- 
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population of capsules with a given release time t m 
is proportional to t r.. 

All these empirical population release laws are 
shown to be possible in an ensemble of capsules or 
particles which follow constant rate release indi- 
vidually. 

We also consider briefly a population of cap- 
sules with individu~ exponential release function 
following Eqn. 3. We show that such a population 
cannot display an exponential release rate unless 
the individual rate parameter K in Eqn. 3 is con- 
stant in the population. This result, together with 
Dappert and Thies’ prediction of exponential re- 
lease for the population from individual constant 
rate release constitute a striking example of a 
general principle which emerges from our investi- 
gation. That is, that in general the empirical re- 
lease functional form yields little information about 
the underlying microprocess. Only direct measure- 
ments of release of single microcapsules reveal the 
basic kinetics involved. 

This investigation also reveals the variety of 
population release rates which are, at least theoret- 
ically, possible with the same type of single cap- 
sule release behaviour as shown to be the preferred 
mechanism in the majority of cases (Hoffman et 
al., 1985, 1986). The empirical investigation of 
single capsule release behaviour together with 
population release behaviour of the same capsules 
under different physical conditions may lead to an 
~derstanding of the factors governing the distri- 
bution of parameters (such as t, and m,) when 
capsules release their payload simultaneously into 
the same medium. One possibility may involve the 
intr~uction of “coupling” between capsules in 
the population that determines the distribution of 
their parameters in a given population. 

The general population model 

The purpose of this section is to extend the 
population release model as given in Dappert and 
Thies (1978a) to allow for statistical “coupling” or 
correlation between the parameter(s) a: governing 
the fractional payload release function m*(t; (r) 
and the total single capsule payload moo_ In the 
case of constant rate release for single capsules, 

m*(t; cx) is a function of t,, the time to complete 
release of the capsule. The parameter (Y here is 
one-dimensional and is identified as t,. In some 
populations the value of m, and t, of a capsule 
may be positively correlated. In such populations, 
capsules with larger payloads will tend to take 
longer to release them completely. If we adopt the 
basic assumptions (a)-(c), allowing, however, for a 
possible correlation between moo and the parame- 
ters (Y, the total population material released by 
time t, M(t), will still be the sum of individual 
capsule material released by time t, m(t). If J/(m,, 
ar)Am, - Aa: designates the fraction of capsules 
having released m, * m*(t; a) by time t, we con- 
clude that: 

M(t) = Nk+rnm - m*(t; cu)tt(m,, a) dm,da 

(7) 
where Rt denotes the range of values of (moo, 01) 
and N the number of capsules in the population. 
We note parenthetically that a, which may be 
vector-valued, may include m, among its compo- 
nents or may depend on mm in other ways. 

Our model, as formulated in Eqn. 7, can be 
easily seen to be an extension of Eqn. 3. To this 
end we introduce the notion of mean or average 
capsule payload mm(aO) in the subpopulation of 
capsules sharing the same value(s) of the parame- 
ter(s) (Y, say a = fxs. In statistical terminology this 
average is called the conditional expectation of 
m, given a! = lyO, and is a deterministic (non-ran- 
dom) function of (Ye. If fJmoo)Am, denotes the 
fraction of capsules in the subpopulation of cap- 
sules with cy = LY* whose payload lies between m, 
and moo + Am,, and g(a,)A(aO) denotes the 
fraction of capsules in the total population with 
parameter(s) a! between (Ye and cyO + Aar,, then we 
may rewrite Eqn. 7 as: 

M(t) = N/m,(a)m*(t; a)g(a) da (7’) 

with: 

When m,(aO) does not depend on LYE, i.e., the 
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average value of the payload subpopulations of 
capsules sharing a fixed value of (Y = CX,, (viz. sub- 
populations with a fixed functional release func- 
tion m*(t; (Ye)) does not depend on the specific 
value (~a, then this constant value must be equal to 
the average payload in the total population, say 

m,, satisfying N5i, = M,. Thus, if mm(aO) does 
not depend on (me, we have: 

M(t) = M,Sm*(t; a)g(a) da 

which is a simple re-expression of Eqn. 1. 
Quite generally, we may introduce the fraction 

f(m,) Am, of capsules in the population with 
payloads between m, and moo + Am,, and the 
average %ii, of payloads in the population. We 
then have the twin relations: 

FI, = jm_,f(m,) dm, and iii, = M,/N 

Using both relations, we arrive at our final formu- 
lation of the expanded model: 

M, m,(a)m*(t; a)g(a) da 
M(t) = 

/ 
(7*) 

J m,f(mJ dm, 

Before applying this formula to specific micro- 
models (specific functional forms of m*(t; LX)), we 
note that M, and the integral in the denominator 
are population constants which do not depend on 
t and which will not affect the form of the popula- 
tion release function M(t), i.e. the form of M(t) 
will be completely determined by the specification 
of the function m,(o) and the density (a) of the 
parameter (Y. 

In this sequel, we shall divide models according 
to their functional payload release function form 
m*(t; a), and then subdivide them according to 
their m,(a) and g(o) forms. 

Populations with constant release rate microcap- 
sules 

The basic ~~~s~an~ rate model 
The release function m(t) of a constant rate 

capsule (given by Eqn. 2) is characterized by two 
parameters, the total payload m, and time to 
complete release t,. If we insert m(t) from Eqn. 2 
into our general population release function as 
given in Eqn. 7*, we obtain: 

q = M’(t) 

where m,(t,) is the average payload for fixed 
values of t r,, and g(t,) is the density of t,. 

In the following subsections, we shall show that 
the exponential, the square-root function Kt’/2 
and the cube-root function W$‘” - W(t>“3 = Kt, 
as well as other empirical release laws result from 
this basic model (Eqn. 9) for different combina- 
tions of m,(t,) and g(t,). 

In order to obtain overall zero-order release 
from a population, it is necessary generally that 
individuals releasing at constant rates have virtu- 
ally identical values of t 30, as may be seen from 
Eqn. 9. Their payloads, however, may follow any 
distribution, thus leading to an arbitrary distribu- 
tion pattern for their rate constant b = m,/t,. 

Exponential population release 
If mea and t m are not correlated in the popula- 

tion, mco(tm)=iiim, as explained in “General 
population model” section and 

M’(t) = Clm+g(t,) dt, 
r, 

where C stands for a generic constant independent 
of t. If t, follows the gamma-distribution with 
shape parameter m = 2 and scale K > 0 then 

g(t,) = K2t,eeK’= if t,>O and 

M’(t) = CeeKt 

leading to 

M(t) =(u’M’(m) dm = C(1 - ewKt=) 

which is the common exponential release function 
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with C = M,. Exponential release for the popula- 
tion may also be obtained from constant rate 

capsules in other ways, e.g. when t m and mm are 
correlated in such a way that 

m,(t,) = Const: t, (Const. > 0) 

and t, has an exponential distribution with scale 
parameter (Y > 0 and density 

g( t ,) = (yePat= for t, > 0 

then according to Eqn. 9 

/ 

co 

M’(t) = Const. e-“‘= dt, = Const: e-“’ 
t 

and 

M(t) = Const.(l - e-*‘) for t > 0 

The last formula (with positive constant) depicts 
again first-order global behaviour. Note that the 
exponential distribution is but a special case of a 

Fig. 1. Gamma density distribution of t, with shape parameter 
m = 2 and scale K z 0. 

gamma-distribution with shape parameter m = 1. 
To relate these results to experimental situa- 

tions, one may expect first-order behaviour in a 
population of constant rate capsules when their 
payloads and times to complete release are uncor- 
related and the marginal density of their release 
times t m follows the general form described in Fig. 
1. 

This density falls off exponentially with too but 
vanishes at t, = 0. As mentioned in the Introduc- 
tion it is widely used in statistical modelling of 
waiting time phenomena and resembles the log- 
normal density of particle size distribution which 
often serves to model physical phenomena (Cars- 
tensen and Musa, 1972; Irani and Callia, 1963; 
Martin et al., 1969). First-order behaviour is also 
expected where the density of too is exponential 
and the scatter of t m and m, in the ensemble 
indicates a linear dependence of m, on t, with 
noise. 

As previously stated, the majority of experimen- 
tal data on release from ensembles of microcap- 
sules and other dispersed systems follows ex- 
ponential kinetics. 

The Kt’/’ population release (apparent Higuchi’s 

Law) 
This type of release is characteristic of non-ho- 

mogeneous capsule population. We show that it 
arises in the basic model for constant rate capsules 
(Eqn. 9) when t, is highly dispersed in the popu- 
lation and m, and t, are related in a simple way, 
namely when 

m,(t,) = a + bt, 

for some positive constants a and b. The density of 
t, is given by: 

and is of the form given in Fig. 2. 
This is the density of the square-root of a 

Cauchy variable. Its dispersion is much higher 
than that of a Gaussian variable since its density 
falls off as l/&(a + bt,) as t, increases; its 
mean is infinite, although its median is of course 
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source may well be non-uniformity arising in the 
production process, some microcapsules having 
multiple cores providing extended release times 

while others break into smaller particles giving 
rapid release of their contents, with the possibility 
of lowered efficiency of coating in the process. 

Constant rate followed by apparent Higuchi’s equa- 

tion 

In some experimental situations the population 
release function M(t) appears to display constant 
rate initially followed by a fi law. This macrobe- 
haviour may arise from a non-homogeneous popu- 
lation with m,(t,) = bt, for some b > 0 and 

for some constant 17 > 0. In other words the time 

ral 
to complete release of a single capsule always 

2 exceeds some threshold 1) > 0 and large values of 
Fig. 2. Density of t, when tf, follows the standard Cauchy t, are very likely. In fact the proportion of cap- 
distribution. 

finite. Upon integrating Eqn. 9 with these (condi- 
tional) mean payload and density of t, we obtain: 

4&T 
M(t)=-.& 

The assulnptions leading to Higuchi’s equation j 
provide a possible mathematical expression to the 
notion of non-homogeneous populations. If, for 

6 
0.30’ ’ 

instance, some capsules are not separated and 
form an entity comprised of several capsules which 
would separately follow a constant-rate release, 
then the effective release time would be much 
larger than the single capsule release time, the 
effective payload would be a multiple of the origi- 
nal payload and the two would be positively corre- 
lated. 

0.18” 

Many systems do in fact observe apparent 
Higuchi release behaviour (see Hoffman et al., 
1986) and this may result from population distri- 
bution following the above form. We see (Fig. 2) 
that the sample distribution includes groups hav- 
ing very short and very long release durations. The 

QO6. ’ 

, 
0.6 2.4 4.0 

toD 

Fig. 3. Pareto density distribution of t,. 
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sules with t m exceeding a fixed value a > 17 is 

00 

J d- 
1 4 n-=1_ 11 

( 1 

i/2 

a ts/z a m 

which falls off to zero at the rate of l/G. Using 

Eqn. 9 again we find that 

bt 

M(t) = 

ift<v 

bn(2fi/fi - 1) iftaq 

The distribution of t, given by Eqn. 10 is the 
Pareto distribution often used by econometricians 
to model income distribution. It is characterized 

by its positive threshold of minimum income n 
and its slow descent to zero for high incomes (Fig. 
3). The difference between the square-root of 
Cauchy distribution and the Pareto distribution 

(Figs. 2 and 3) is that the latter has a larger value 
for the minimal t m, the time up to which no 

microcapsule has released all its contents. This 
applies to all systems in which summation of the 
constant rate lines (none of which are terminated) 
gives a cumulative straight line. This explains the 
zero-order behaviour during the initial period 
found by many investigators, as for example, where 
the square root of time relationship starts after 

25% release (Madan et al., 1974). Another system 
showed similar behaviour but also appeared to 
observe square root time behaviour throughout 
(Jalsenjak et al., 1980). 

Apparent Hixson and Crowell release law 
This empirical population release law (Eqn. 6) 

is applicable for small values of t, or in the initial 
stages of release. It was shown to fit empirical 
release curves in populations of capsules that tend 
to disintegrate prior to completion of their payload 
release (Be&a and Donbrow, 1982). 

We shall display a model for constant rate 
capsules that predicts 

M’(t) = C(A - t)2 for 0 G t Q A 

for some positive constants A and C, with 
C = 3 K3 and A = Mg3/K. The parameters M, 
and K are the total payload and slope parameters 
defined in Eqn. 6. 

For this model 

M(t) = C/3(A3 -(A - t)‘) for t < A 

which constitutes a mere rewriting of Eqn. 6 as 
Hixson and Crowell’s law for t < A. 

The functional forms needed for m,(t,) and 
g(t,) here are: 

g(t,)=-$A-t,) ifO,<t,<A 

and 

m,(t,) = Const: t, 

Upon inserting these into the model (Eqn. 9) we 
obtain the desired result. 

The density chosen here for t, puts into 

mathematical form the empirical requirement that 
all capsules in the medium disintegrate or other- 
wise release their payload by some specific time A. 
Furthermore, the chosen form of m,(t,) pos- 
tulates that the average payload of all capsules in 
the medium that release all their payload at t, 
increases linearly with t,. 

Populations of exponential rate individual micro- 
capsules 

Here we assume that the single capsule release 

function is given by: 

m(t) = m,(l - eeKt) (11) 

for t > 0, which is characterized by the capsule 

total payload moo and a one-dimensional positive 

parameter K. In the micro-model described by 
Dappert and Thies (1978a), K and m, are related 
by the equation: 

where C;(t) is the (assumed) concentration in the 
region of the internal wall of the capsule (Ci(t) = 
C,(O) at t = 0) and C, is the (assumed) constant 
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con~ntration at its external wall region; F is a for some C > 0. Under the conditions of Eqn. 13 

parameter which depends entirely on the geomet- the only density g(K) to satisfy Eqn. 14 is the 

ric properties of the capsule and may vary from degenerate density that concentrates all its mass as 

one capsule to another in the population. K = K, thus proving our assertion. 

When m(t) from Eqn. 11 is inserted into our 
general model (7*) we obtain 

Although exact first order may not exist in a 
population of exponentially releasing individual 
capsules, release behaviour that appears “almost” 

exponential is possible, as may be seen from Eqn. 
12 by assuming different forms for the functions 

M,(K). This exercise is fruitless, however, unless 
an empirical model is available for the population 
and the individual capsules are exponential. 

M(t) = C~wm,(K)(l - eeKf)g(K) dK (12) 

where C is some positive constant, m,(K) is the 
mean payload in the subpopulation of capsules 
with a constant rate K and g(K) is the density of 

K in the population. Eqn. 12 provides a general 
formula for deriving the global function M(t) for 
microcapsules with individual exponential release. 

It is natural to expect that a population of 
exponentially releasing microcapsules will display 
global exponential release as in Eqn. 3. This is, 
however, not the case, except in the unlikely popu- 
lation of capsules that release their payload at the 
exact same rate K,. Translated into the mathe- 
matical terms of Eqn. 12, global first-order will 

result only if the density g(K) of K is concentrated 
at some constant K, > 0; in other words g(K) is 

degenerate at K,. This assertion is valid under 
some general assumptions (Eqn. 13) that stipulate 
that m,(K) be a “nice” function of K. These mild 
assumptions are expected to be obeyed in any 

realistic physical system. We conclude then that 
first-order behaviour cannot arise in populations 
of exponentially releasing capsules, unless the 
capsules are extremely homogeneous and thus 
share the same release rate IS. 

We include the proof of our assertion for the 
sake of completeness. 

The “nice” behaviour of m,(K) is translated 
into the condition that 

J 
CG 

erKm,(K)g(K) dK < co 
0 

(13) 

for some r) 0. If M(t) of Eqn. 12 is to equal 
M,(l - eFKlt) for all t > 0 and some K, > 0 then 
for all i=O, 1, 2,... 

J ~Kim~~K)g~K) dK = CKI 
0 

04) 

Conclusions 

(1) The theory of release of contents from an 
ensemble of single particles such as microcapsules 
has been developed for the case of individuals 
releasing at constant rate based on simple assump- 
tions (a)-(c). Four types of kinetics used in the 
literature for populations have been derived on the 
basis of different statistical dist~butions of the 

parameter t,. Many other types of release kinetics 
may also be understood using the same basic 

theory. 

(2) In the event that conditions (a)-(c) are not 
observed, it is possible that these or other kinetic 
profiles may be followed. 

(3) In all cases, the overall kinetics is de- 
termined by the micro-behaviour and its distribu- 
tion. 

(4) Where individuals follow first order be- 
haviour, the cumulative release data cannot be 
exponential unless all the particles have identical 
parameters. As this situation is extremely rare, 
overall exponential release proves individual non- 
exponential release, and derives from statistical 
distribution phenomena of the types presented and 
analyzed. 
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